مقاله جامع انرژی هسته ای | تحقیق در مورد انرژی هسته ای|فواید انرژی هسته ای

انرژی هسته ای irnab ir مقاله جامع انرژی هسته ای | تحقیق در مورد انرژی هسته ای|فواید انرژی هسته ای

مقاله انرژی هسته ای

انرژی هسته ای چیست به زبان ساده,نحوه آزاد شدن انرژی هسته‌ای,سوخت راکتورهای هسته‌ای,برتری انرژی هسته‌ای,تحقیق در مورد انرژی هسته ای,تاریخچه انرژی هسته ای,سوخت هسته ای,مواد کند کننده نوترون,خنک کننده‌ها در راکتور هسته ای,انواع راکتورهای هسته ای,کاربرد راکتورهای هسته ای,بمبهای هسته ای,کاربردهای پزشکی انرژی هسته ای,کاربرد انرژی هسته ای در کشاورزی,کاربردهای صنعتی انرژی هسته ای,انرژی بستگی هسته‌ای,کاربردهای سوخت هسته ای,سوخت هسته ای اورانیوم,آرم انرژی هسته ای,انرژی هسته ای ایران,معایب انرژی هسته ای

وقتی حرف از انرژی می شود؛ نمونه‌های آشنای انرژی مثل انرژی گرمایی ،نور و یا انرژی مکانیکی و الکتریکی در ذهنمان مرور می‌شود.

در این مقاله با انرژی هسته‌ای و امکاناتی که این انرژی در اختیار قرار می‌دهد آشنا ‌می شویم، مطمئنا شیفته این انرژی خدادادی خواهید شد.

انرژی هسته ای چیست به زبان ساده،نحوه آزاد شدن انرژی هسته‌ای

می‌دانیم که هسته از پروتون (بار مثبت) و نوترون (بدون بار الکتریکی) تشکیل شده است. بنابراین بار الکتریکی آن مثبت است.

اگر بتوانیم هسته را به طریقی به دو تکه تقسیم کنیم، تکه‌ها در اثر نیروی دافعه الکتریکی خیلی سریع از هم فاصله گرفته و انرژی جنبشی فوق العاده‌ای پیدا می‌کنند. در کنار این تکه‌ها ذرات دیگری مثل نوترون و اشعه‌های گاما و بتا نیز تولید می‌شود.

انرژی جنبشی تکه‌ها و انرژی ذرات و پرتوهای بوجود آمده، در اثر برهم کنش ذرات با مواد اطراف، سرانجام به انرژی گرمایی تبدیل می‌شود.

مثلا در واکنش هسته‌ای که در طی آن ۲۳۵U به دو تکه تبدیل می‌شود، انرژی کلی معادل با ۲۰۰MeV را آزاد می‌کند. این مقدار انرژی می‌تواند حدود ۲۰ میلیارد کیلوگالری گرما را در ازای هر کیلوگرم سوخت تولید کند. این مقدار گرما ۲۸۰۰۰۰۰ بار بزرگتر از حدود ۷۰۰۰ کیلوگالری گرمایی است که از سوختن هر کیلوگرم زغال سنگ حاصل می‌شود.

کاربرد حرارتی انرژی هسته‌ای،فواید انرژی هسته ای،معایب انرژی هسته ای،کاربرد انرژی هسته ای

حال گرمای حاصل از واکنش هسته‌ای در محیط راکتور هسته‌ای تولید و پرداخته می‌شود.

میتوان گفت در طی مراحلی در راکتور این گرما پس از مهارشدن انرژی آزاد شده واکنش هسته‌ای تولید و پس از خنک سازی کافی با آهنگ مناسبی به خارج منتقل می‌شود. گرمای حاصله آبی را که در مرحله خنک سازی بعنوان خنک کننده بکار می‌رود را به بخار آب تبدیل می‌کند. بخار آب تولید شده ، همانند آنچه در تولید برق از زعال سنگ ، نفت یا گاز متداول است، بسوی توربین فرستاده می‌شود تا با راه اندازی مولد، توان الکتریکی مورد نیاز را تولید کند.

در واقع، راکتور همراه با مولد بخار ، جانشین دیگ بخار در نیروگاه‌های معمولی شده است.

سوخت راکتورهای هسته‌ای

ماده‌ای که به عنوان سوخت در راکتورهای هسته‌ای مورد استفاده قرار می‌گیرد باید شکاف پذیر باشد یا به طریقی شکاف پذیر شود.۲۳۵U شکاف پذیر است ولی اکثر هسته‌های اورانیوم در سوخت از انواع ۲۳۸U است. این اورانیوم بر اثر واکنشهایی که به ترتیب با تولید پرتوهای گاما و بتا به ۲۳۹Pu تبدیل می‌شود. پلوتونیوم هم مثل ۲۳۵U شکافت پذیر است. به علت پلوتونیوم اضافی که در سطح جهان وجود دارد نخستین مخلوطهای مورد استفاده آنهایی هستند که مصرف در آنها منحصر به پلوتونیوم است.

میزان اورانیومی که از صخره‌ها شسته می‌شود و از طریق رودخانه‌ها به دریا حمل می‌شود، به اندازه‌ای است که می‌تواند ۲۵ برابر کل مصرف برق کنونی جهان را تأمین کند. با استفاده از این نوع موضوع ، راکتورهای زاینده‌ای که بر اساس استخراج اورانیوم از آب دریاها راه اندازی شوند قادر خواهند بود تمام انرژی مورد نیاز بشر را برای همیشه تأمین کنند، بی آنکه قیمت برق به علت هزینه سوخت خام آن حتی به اندازه یک درصد هم افزایش یابد.

برتری انرژی هسته‌ای نسبت به انرژی های دیگر

بر خلاف آنچه که رسانه‌های گروهی در مورد خطرات مربوط به حوادث راکتورها و دفن پسماندهای پرتوزا مطرح می‌کند از نظر آماری مرگ ناشی ازخطرات تکنولوژی هسته‌ای از ۱ درصد مرگهای ناشی از سوختن زغال سنگ جهت تولید برق کمتر است. در سرتاسر جهان تعداد نیروگاههای هسته‌ای فعال بیش از ۴۱۹ می‌باشد که قادر به تولید بیش از ۳۲۲ هزار مگاوات توان الکتریکی هستند. بالای ۷۰ درصد این نیروگاه‌ها در کشور فرانسه و بالای ۲۰ درصد آنها در کشور آمریکا قرار دارد.

تحقیق در مورد انرژی هسته ای

راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند.

اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.

تاریخچه انرژی هسته ای

تخستین انرژی کنترل شده ناشی از شکافت هسته در دسامبر ۱۹۴۲ بدست آمد.

با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.

ساختمان راکتور
با وجود تنوع در راکتور‌ها، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت، پوشش برای سوخت، کند کننده نوترونهای حاصله از شکافت، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

سوخت هسته‌ای

سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند.۲۳۲Th ، ۲۳۳U ۲۳۵U ، ۲۳۸U ، ۲۳۹Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

در کنار قابلیت شکافت، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد.هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.

غلاف سوخت راکتور
سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.
مواد کند کننده نوترون
یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ،دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.
خنک کننده‌ها در راکتور هسته ای
گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

از مایعات و گازها به عنوان خنک کننده استفاده شده‌ است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.

مواد کنترل کننده شکافت
برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.
انواع راکتورهای هسته ای
راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با ۲۳۵U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.
کاربرد راکتورهای هسته‌ای
راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.

دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.

تحقیق جامع در مورد انرژی هسته ای

شروع کار نیروی هسته‌ای از ۴۰ سال پیش آغاز شد و اینک این نیرو همان اندازه از برق جهان را تأمین می‌کند که ۴۰ سال پیش بوسیله تمام منابع انرژی تأمین می‌شد. حدود دو سوم از جمعیت جهان در کشورهایی زندگی می‌کنند که نیروگاههای هسته‌ای آنها در زمینه تولید برق و زیر ساختهای صنعتی نقش مکمل را ایفا می‌کنند. نیمی از مردم جهان در کشورهایی زندگی می‌کنند که نیروگاههای هسته‌ای در آنها در حال برنامه‌ریزی و یا در دست ساخت هستند.

به این ترتیب، توسعه سریع نیروی هسته‌ای جهان مستلزم بروز هیچ تغییر بنیادینی نیست و تنها نیازمند تسریع راهبردهای موجود است. امروزه حدود ۴۴۰ نیروگاه هسته‌ای در ۳۱ کشور جهان برق تولید می‌کنند. بیش از ۱۵ کشور از مجموع این تعداد در زمینه تأمین برق خود تا ۲۵ درصد یا بیشتر ، متکی به نیروی هسته‌ای هستند. در اروپا و ژاپن سهم نیروی هسته‌ای در تأمین برق بیش از ۳۰ درصد است، در آمریکا نیروی هسته‌ای ۲۰ درصد از برق را تأمین می‌کند. در سرتاسر جهان ، دانشمندان بیش از ۵۰ کشور از حدود ۳۰۰ راکتور تحقیقاتی استفاده می‌کنند تا: درباره فناوریهای هسته‌ای تحقیق کرده و برای تشخیص بیماری و درمان سرطان ، رادیوایزوتوپ تولید کنند.

همچنین در اقیانوسهای جهان راکتورهای هسته‌ای نیروی محرکه بیش از ۴۰۰ کشتی را بدون اینکه به خدمه آن و یا محیط زیست آسیبی برسانند، تأمین می‌کنند. دوره پس از جنگ سرد ، فعالیت جدیدی برای حذف مواد هسته‌ای از تسلیحات و تبدیل آن به سوخت هسته‌ای غیر نظامی آغاز شد. انرژی هسته‌ای کاربردهای زیاد در پزشکی در علوم و صنعت و کشاورزی و … دارد. لازم به ذکر است انرژی هسته‌ای به تمامی انرژیهای دیگر قابل تبدیل است، ولی هیچ انرژی به انرژی هسته‌ای تبدیل نمی‌شود. موارد زیادی از کاربردهای انرژی هسته‌ای در زیر آورده می‌شود.

نیروگاه هسته‌ای

نیروگاه هسته‌ای (Nuclear Power Stotion) یک نیروگاه الکتریکی که از انرژی تولیدی شکست هسته اتم اورانیوم یا پلوتونیم استفاده می‌کند. اولین جایگاه از این نوع در ۲۷ ژوئن سال ۱۹۵۸ در شوروی سابق ساخته شد. که قدرت آن ۵۰۰۰ کیلو وات است. چون شکست سوخت هسته‌ای اساسا گرما تولید می‌کند، از گرمای تولید شده راکتورهای هسته‌ای برای تولید بخار استفاده می‌شود. از بخار تولید شده برای به حرکت در آوردن توربینها و ژنراتورها که نهایتا برای تولید برق استفاده می‌شود.

بمبهای هسته‌ای

این نوع بمبها تا حالا قویترین بمبهای و مخربترینهای جهان محسوب می‌شود. دارندگان این نوع بمبها جزو قدرتهای هسته‌ای جهان محسوب می‌شود.

پیل برق هسته‌ای
پیل هسته‌ای یا اتمی دستگاه تبدیل کننده انرژی اتمی به جریان برق مستقیم است، ساده‌ترین پیلها) شامل دو صفحه است. یک پخش کننده بتای خالص مثل استرنیوم ۹۰ و یک هادی مثل سیلسیوم.
جریان الکترونهای سریعی که بوسیله استرنیوم منتشر می‌شود ازمیان نیم هادی عبور کرده و در حین عبور تعداد زیادی الکترون اضافی را از نیم هادی جدا می‌کند که در هر حال صدها هزار مرتبه زیادتر از جریان الکتریکی حاصل از ایزوتوپ رادیواکتیو استرنیوم ۹۰ می‌باشد.

کاربردهای پزشکی انرژی هسته ای

تشعشعات هسته‌ای در پزشکی کاربردهای زیادی دارند که اهم آنها عبارتند از:

گاما اسکن
رادیو گرافی

رادیو بیولوژی

کاربردهای کشاورزی

استرلیزه کردن هسته‌ای و میکروب زدایی وسایل پزشکی با پرتو‌های هسته‌ای

کاربرد انرژی هسته ای در کشاورزی

در کشاورزی، تشعشعات هسته‌ای کاربردهای زیادی دارد که مهمترین آنها عبارتست از:

انبار کردن میوه‌ها

کنترل حشرات با تشعشعات هسته‌ای

موتاسیون هسته‌ای ژنها در کشاورزی

جلوگیری از جوانه زدن سیب زمینی با اشعه گاما

باستان شناسی و زمین شناسی که عمر یابی صخره‌ها با C14 در باستان شناسی خیلی مشهور است.

کاربردهای صنعتی انرژی هسته ای

انرژی هسته ای در صنعت کاربردهای بسیار دارد، از جمله مهمترین آنها عبارتند از:

سنجش پرتویی میزان سائیدگی قطعات در حین کار

دبی سنجی پرتویی

چگالی سنج موادمعدنی با اشعه

نشت یابی با اشعه

کشف عناصر نایاب در معادن

سنجش پرتویی میزان خوردگی قطعات

انرژی بستگی هسته‌ای

می‌توان تصور کرد که جرم هسته ، M ، با جمع کردن Z (تعداد پروتونها) ضربدر جرم پروتون و N تعداد نوترونها ضربدر جرم نوترون بدست می‌آید.

M = Z×Mp + N×Mn

از طرف دیگر M همیشه کمتر از مجموع جرمهای تشکیل دهنده‌های منزوی هسته است. این اختلاف به توسط فرمول انیشتین توضیح داده می‌شود که رابطه بین جرم و انرژی هم ارزی جرم و انرژی را برقرار می‌سازد. اگر یک دستگاه مادی دارای جرم باشد در این صورت دارای انرژی کلی E است. E = M C2 که در آن C سرعت نور در خلا و M جرم کل هسته مرکب از نوکلئونها و E مقدار انرژیی است که در اثر فروپاشی جرم M تولید می‌شود. بنابر این اصول انرژی هسته‌ای بر آزاد سازی انرژی پیوندی هسته استوار است. هر سیستمی که دارای انرژی پیوندی بیشتر باشد پایدار می‌باشد. در واقع جرم مفقود شده در واکنشهای هسته‌ای طبق فرمول E = M C2 به انرژی تبدیل می‌شود. پس انرژی بستگی اختلاف جرم هسته و جرم نوکلئونهای تشکیل دهنده آن است، که معرف کاری است که باید انجام شود تا نوکلئونها از هم جدا شوند.

مواد شکافتنی
مواد ناپایدار برای اینکه به پایداری برسند، انرژی گسیل می‌کنند تا به حالت پایدار برسد. معمولا عناصری شکافت پذیر هستند که جرم اتمی آنها بالای ۱۵۰ باشد ،۲۳۵U و ۲۳۸U در معادن یافت می‌شود. ۹۹٫۳ درصد اورانیوم معادن ۲۳۸U می‌باشد.و تنها ۷% آن ۲۳۵U می‌باشد. از طرفی ۲۳۵U با نوترونهای کند پیشرو واکنش نشان می‌دهد. ۲۳۸Uتنها با نوترونهای تند کار می‌کند، البته خوب جواب نمی‌دهد. بنابر این در صنعت در نیروگاههای هسته‌ای ۲۳۵U به عنوان سوخت محسوب می‌شود. ولی به دلایل اینکه در طبیعت کم یافت می‌شود. بایستی غنی سازی اورانیوم شود، یعنی اینکه از ۷ درصد به ۱ الی ۳ درصد برسانند.
شکافت ۲۳۵U
در این واکنش هسته‌ای وقتی نوترون کند بر روی ۲۳۵U برخورد می کند به ۲۳۶U تحریک شده تبدیل می‌شود. نهایتا تبدیل به باریوم و کریپتون و ۳ تا نوترون تند و ۱۷۷ Mev انرژی آزاد می‌شود. پس در واکنش اخیر به ازای هر نوکلئون حدود ۱ Mev انرژی آزاد می‌شود. در واکنشهای شیمیایی مثل انفجار به ازای هر مولکول حدود ۳۰ Mev انرژی ایجاد می‌شود. لازم به ذکر است در راکتورهای هسته‌ای که با نوترون کار می‌کند، طبق واکنشهای به عمل آمده ۲ الی۳ نوترون سریع تولید می‌شود. حتما این نوترونهای سریع باید کند شوند.

پلوتونیوم یک عنصر شیمیایی با عدد اتمی ۹۲ و جرم اتمی ۲۳۹ که اولین بار طی واکنش کنترل شده شکست هسته اورانیوم تهیه ‏گردید. کاربردهای انرژی هسته ای به وسیله بشر با اورانیوم ۲۳۵ شروع شد. که مهمترین سوخت هسته ای بوده و هست.‏

سوخت هسته ای اورانیوم

اگر ایزوتوب اورانیوم ۲۳۵ ( موجود در اورانیوم طبیعی ) قابل شکست نمی بود حتی با داشتن کوهی از اورانیوم طبیعی کسی ‏نمی توانست از انرژی نهانی آن استفاده نماید. این ایزوتوپ به وسیله نوترون هایی با هر مقدار انرژی به خوبی شکسته می شود.‏
فلز طبیعی اورانیوم محتوی مقادیر بسیار کمی از آن است. فقط ۰٫۷ درصد باقیمانده درصد اورانیوم طبیعی شامل ۹۹٫۳ ‏درصد اورانیوم ۲۳۸ می باشد که فقط به وسیله نوترون های سریع شکسته می شود.‏
اورانیوم ۲۳۸ به طور بسیار موثری نوترون های کند با انرژی یک تا ده الکترون ولت را جذب می کند.
سوخت هسته ای پلتونیوم

اگر نوترون های پر انرزی حاصل از شکست اورانیوم ۲۳۵ را به کمک کند کننده هایی از جمله گرافیت ، آب معمولی یا ‏آب سنگین یا مواد دیگر به این مقدار انرژی (۱ تاev 10) کند کنیم، معجزه شروع می شود. هسته اورانیوم ۲۳۸ چنین نوترون ‏های آهسته ای را جذب می کند. سپس تحریک و تجزیه شده و بالاخره به پلتیونیوم با نیم عمر ۲۴٫۴ سال تبدیل می شود.
نکته قابل توجه این که اورانیوم ۲۳۵ هم به وسیله نوترون های سریع و هم آهسته شکسته می شود. بدین ترتیب در حین ‏مصرف اورانیوم ۲۳۵ در راکتور ، مقدار معینی اورانیوم ۲۳۸ (غیر قابل شکست در عمل ) به پلتونیوم ۲۳۹ ( قابل شکست ) ‏تبد یل می شود.
در روش فوق در طی مصرف تدریجی اورانیوم ۲۳۵ (۰٫۷ درصد) و پلتونیوم ۲۳۹ که به طور غیر راکتور هسته ای ، ‏تبدیل مقدار قابل ملاحظه ای از اورانیوم ۲۳۸ طبیعی به سوخت هسته ای مناسب ممکن می گردد.‏
پلتونیوم ۲۳۸ خالص یک سم قوی است و به سادگی در هوا آتش می گیرد و در حین تجزیه ذرات آلفایی با انرژی حدود Mev‏ ۵ آزاد می کند. ‏
ورود پلتونیوم بویژه در ارگانیسوم انسان یا حیوان خطرناک می باشد. زیرا نمی تواند به وسیله اعمال طبیعی از بدن خارج ‏شود. پلتونیوم در بدن ، به طور شدیدی اشعه گاما ساطع کرده و باعث بیماری های تشعشعی حاد و یا حتی مرگ می شود. ‏

کاربردهای سوخت هسته ای

در راکتور هسته ای از این مواد جهت تامین انرژی گداخت هسته ای وشکافت هسته های سنگین استفاده می شود.‏ در نیروگاه هسته ای جهت تولید انرژی هسته ای و راه اندازی ژنراتورها ، موتورها و دیناموها به کار برده می شود.‏
در صنایع نظامی کاربرد وسیعی داشته و در ساخت مهمات و سلاحهای پرقدرت از جمله انواع چاشنی ها ، راکت ها ، نارنجک ها ، ‏زیر دریایی های هسته ای ، سفینه های فضایی ، موشکهای دور برد و بمب های هسته ای استفاده فراوان می شود.

مقاله انرژی هسته ای

انرژى هسته‌اى با توجه به ویژگىهاى حیرت انگیزش در آزاد سازى حجم بالایى از انرژى در قبال از میان رفتن مقادیر ناچیزى از جرم ، به عنوان جایگزین سوختهاى پیر فسیلى که ناجوانمردانه در حال بلعیده شدن هستند، مطرح شده است. ایران نیز با وجود منابع گسترده نفت و گاز به دلیل کاربردهاى بهترى که سوختهاى فسیلى نسبت به سوزانده شدن در کوره‌ها و براى تولید حرارت دارند، براى دستیابى به این نوع از انرژى تلاشهایى را از سالهاى دور داشته است و در سالهاى پس از انقلاب همواره مورد اتهام واقع شده که هدف اصلیش نه فناورى صلح آمیز که رسیدن به فناورى تسلیحات هسته‌اى است.

چرخه سوخت هسته‌اى شامل مراحل استخراج ، آسیاب ، تبدیل ، غنى سازى ، ساخت سوخت باز تولید و راکتور هسته‌اى است و به یک معنا کشورى که در چرخه بالا به حد کاملى از خودکفایى و توسعه رسیده باشد با فناورى تولید سلاحهاى هسته‌اى فاصله چندانى ندارد.

استخراج
در فناورى هسته‌اى ، خواه صلح آمیز باشد یا نظامى ، ماده بنیادى مورد نیاز، اورانیوم است. اورانیوم از معادن زیر زمینى و همچنین حفاریهاى روباز قابل استحصال است. این ماده به رغم آنکه در تمام جهان قابل دستیابى است، اما سنگ معدن تغلیظ شده آن به مقدار بسیار کمى قابل دستیابى است. زمانى که اتمهاى مشخصى از اورانیوم در یک واکنش زنجیره‌اى دنباله دار که به دفعات متعدد تکرار شده ، شکافته مى‌شود، مقادیر متنابهى انرژى آزاد مى‌شود، به این فرآیند شکافت هسته‌اى مى‌گویند.

فرآیند شکاف در یک نیروگاه هسته‌اى به آهستگى و در یک سلاح هسته‌اى با سرعت بسیار روى مى‌دهد، اما در هر دو حالت باید به دقت کنترل شوند. مناسبترین حالت اورانیوم براى شکافت هسته‌اى ایزوتوپهاى خاصى از ۲۳۵U (یا ۲۳۹Pu) است. ایزوتوپ ها ، اتمهاى یکسان با تعداد نوترونهاى متفاوت هستند. به هرحال ۲۳۵U به دلیل تمایل باطنى به شکافت در واکنشهاى زنجیرى و تولید انرژى حرارتى به عنوان «ایزوتوپ شکافت» شناخته شده است.

هنگامى که اتم ۲۳۵U شکافته مى‌شود دو یا سه نوترون آزاد مى‌کند. این نوترونها با سایر اتمهاى۲۳۵U برخورد کرده و باعث شکاف آنها و تولید نوترونهاى جدید مى‌شود. براى روى دادن یک واکنش هسته‌اى به تعداد کافى از اتمهاى ۲۳۵U براى امکان ادامه یافتن این واکنشها بصورت زنجیرى و البته خودکار نیاز است. این جرم مورد نیاز به عنوان «جرم بحرانى» شناخته مى‌شود. باید توجه داشت که هر ۱۰۰۰ اتم طبیعى اورانیوم شامل تنها حدود هفت اتم ۲۳۵U ، یعنی (۰٫۷ درصد) بوده و ۹۹۳ اتم دیگر از نوع ۲۳۸U هستند که اصولا کاربردى در فرآیندهاى هسته‌اى ندارند.

آرم انرژی هسته ای ایران www irnab ir مقاله جامع انرژی هسته ای | تحقیق در مورد انرژی هسته ای|فواید انرژی هسته ای

آرم انرژی هسته ایران

نویسنده: مهدی مقدس

منابع:uu.blogfa.com

مقاله جامع انرژی هسته ای | تحقیق در مورد انرژی هسته ای|فواید انرژی هسته ای
۳امتیاز ۴رای